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Abstract 

We consider the ARTl neural network architecture. Useful properties of ART1, associated with the learning of an 
arbitrary list of binary input patterns, i r e  examined. These properties reveal some of the “good” characteristics 
of the ARTl neural network architecture when it is used as a tool for the learning of recognition categories. 
In particular, it is found that if ARTl is repeatedly presented with an arbitrary list of binary input patterns, 
learning self-stabilizes in at most m list presentations, where n corresponds to the number of distinct size 
patterns in the input list. 

1 Introduction 
A neural network architecture for the learning of recognition categories was derived and analyzed by 
Carpenter and Grossberg in [l]. This architecture was termed ARTl in reference to the adaptive 
resonance theory introduced by Grossberg [2]. 

It was shown in [I] that ARTl self-organizes and self-stabilizes its recognition codes in response 
to  arbitrary orderings of arbitrarily many and arbitrarily complex binary input patterns. In this 
article, the timing aspect of this self-organization and self-stabilization process is examined for the 
fast learning case. Actually, an upper bound is derived on the number of list presentations required 
by ARTl to self stabilize the recognition codes of an input list of arbitrary binary input patterns 
that is repeatedly presented to  ARTl. The upper bound depends only on the number of distinct 
size binary patterns in the input list. (The size of a binary input pattern is equal to the number 
of its components that are one.) In particular, if ARTl is repeatedly presented with an input list 
of m distinct size patterns i t  will self-stabilize the recognition codes of the input list in at most m 
list presentations. Furthermore, other useful properties of learning in ART1, induced by its internal 
dynamics, are described. These properties reveal some of the characteristics of ARTl as a self- 
organizing neural network architecture for the learning of recognition categories. 

2 Model-Preliminaries 
A complete description of ARTl and the theorems that give insight into its operation are provided in 
[l]. The heart of ARTl consists of two interconnected layers of neurons, called the F1 and FZ layers. 
Every node in the F1 layer is connected via bottom-up traces to all the nodes in the Fz layer. Input 
patterns are presented at the F1 layer. Every node in the F2 layer is connected with all the nodes in 
the Fl layer via top-down traces. The results of the paper are valid under the following assumptions: 

Al:  All hypotheses of section 18 in [l] hold (one of the hypotheses is that fast learning occurs). 

A2: L - 1 5 111-l. 
A3: 15 111 5 A4 - 1. 
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A4: F2 has at  least N nodes. 

where \I \  is the size of an arbitrary pattern I in the input list, M is the number of nodes in the F1 layer, 
N is the number of patterns in the input list and L is a parameter associated with the adaptation of 
bottom-up and top-down traces in the ARTl neural network architecture. 

The top-down traces that emanate from a node in the Fz layer are called templates. In this paper, 
only the fast learning case is considered; in that case we let the bottom-up traces and top-down 
traces reach their limiting values. Initial values for the top-down traces can be taken, without loss of 
generality, equal to  one. To prove our results, the templates of ARTl need to  be considered either 
prior to  a pattern's presentation or after a template has fast learned a pattern. Hence, for the purposes 
of the results discussed in this paper, the ARTl templates can always be thought of as binary vectors. 

Consider a pattern I in the list and a template V corresponding t o  an Fz layer node. There is a 
one-to-one correspondence between the components of the binary vectors I and V .  A component of 
I corresponds t o  a component of V if both of them activate the same Fi layer node. We define, as 
in [l], three types of learned templates with respect to  an input pattern I :  subset templates, superset 
templates and mixed templates. The components of a subset template V satisfy V & I .  They are 
one only at  a subset of the corresponding I components. The components of a superset template V 
satisfy V 2 I .  They are one at all the corresponding components of I that are one, as well as at  some 
components of I that are zero. The components of a mixed template V are one at  some, but not all 
of the corresponding I components, as well as at  some of the components of I that are zero. In this 
case, the set of the V components that are one is neither a subset nor a superset of the set of the I 
components that are one. Sometimes it is convenient to  refer to  a pattern I as being a subset, superset 
or mixed pattern with respect to  a template V if I V, I 2  V or V is a mixed template with respect 
to  I .  We say that a learned template in the ARTl network is stable it it can not be modified by the 
presentation of any pattern in the input list. Besides the learned templates described above, we also 
define a template V to be an uncommitted template if i t  corresponds t o  a node that has not learned 
any pattern yet. We assume that the components of an uncommitted template consist of all ones. 

Since an input pattern I is a binary vector and a template V can be thought of as a binary vector, 
we define by ) I )  and J V )  the site of the binary vectors I and V ,  respectively. Furthermore, if I is a 
pattern of the input list and V is a template of ART1, we define I n  V as the binary vector with ones 
only at components where both the I and V components are one, and zeros at  all other components. 
Let us now assume that an input pattern I is presented at  the Fl layer. The activity at  the Fl layer 
changes from 0 to I .  Let us also also assume that a node in the F2 layer with template V is searched 
at  some point during 1's presentation. The activity at F1 changes from I to I n v .  If J I n V l  .IIl-' 2 p 
we say that the template V codes pattern I .  If instead I In  VI .[It-' < p, then the node with template 
V is reset and another node in the Fz layer is searched. The parameter p, called vigilance, determines 
whether the top-down template is a good match of the input pattern I .  We also say, as in [I], that 
a pattern I has direct access to template V if presentation of I leads at once to  activation of the Fz 
layer node with corresponding template V ,  and this template codes I on that trial. 

Carpenter and Grossberg made in [l] the following conjecture: If the F2 layer has at least N nodes 
and if the hypotheses of Section 18 in [l] are valid then, each member of a list of N binary input 
patterns that is cyclically presented to ARTl will have direct access to an F2 layer node after at  most 
N list presentations. In this paper, under assumptions A.l-A.4 we prove a much stronger result. The 
result states that  the number of list presentations required by ARTl to  learn an arbitrary list of binary 
input patterns that is repeatedly presented to ARTl is upper bounded by the number of distinct size 
patterns i n  the input list. Considering that N is an integer between 2 and 2M-2 (patterns of size 0 and 
hl are excluded) one can see that in most cases of interest the number of distinct size patterns is much 
smaller than N .  It  should be emphasized that our result is stronger than Carpenter and Grossberg's 
conjecture for ARTl networks that satisfy Assumption A.2. In the case where A.2 is not valid, the 
aforementioned result does not hold. Consequently, Carpenter and Grossberg's conjecture for ARTl 
networks that do not satisfy Assumption A.2 is still an open problem. 
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3 Results 
In the following discussion two Lemmas are presented that are instrumental for the proof of our results. 
Lemma 1 is valid under assumptions A.l-A.3. 

Lemma 1 Suppose that I is an arbitrary pattern from the input list. Learned subset templates with 
respect to I are seamhed first in  order of decreasing size (i.e., the closest learned subset template to I 
is searched first, and if it is reset, the next closest subset template to I is searched and so on). If all 
learned subset templates are reset then, superset and mixed learned templates, as well as uncommitted 
templates are searched, not necessarily in that order. 

Lemma 1 is a shortened restatement of Theorem 7 in [l] and its proof can be found there. I t  is 
obvious by the description of the reset mechanism in Section 2, that if a template VI is searched first 
and reset (i.e., II n VI1 . 1II-l < p ) ,  then any other template Vz that is searched later will be reset if 
II n V2l . 1II-l 5 [ I n  Vll . 1II-l. Lemma 2 is an immediate consequence of Lemma 1 and the above 
discussion. Lemma 2 is valid under assumptions A.l-A.3. 

Lemma 2 Suppose that I is an arbitrary pattern from the input list, VI is a learned subset template 
(with respect to I )  and V2 is an arbitrary mixed learned template (with respect to I ) ,  prior to I’s 
presentation. Then, if VI is reset and V2 is searched, V -  will also be reset if 

I Inv21  I I n v l l  
IIl - I4 . 

Our results are presented in the form of properties (Pl-P5) of the ARTl neural network. P1,P2 
and P3 address the issue of whether learning in ARTl utilizes network resources wisely. P4 and P5 
are the most important properties, because they address the timing aspect of the self-stabilization 
process in ART1. Properties Pl,P2,P3 are valid under assumptions A.l-A.3, while properties P4,P5 
are valid under assumptions A.l-A.4. 

P1: In ART1, learned templates are distinct. 

P2: In A R T l ,  the number of learned templates is smaller than or equal to the number of patterns in 
the input list. 

P3: If ARTl  is repeatedly presented with an arbitrary list of binary input patterns then, after learning 
has stabilized, there may exist learned templates which are not directly accessed by any pattern 
in the input list. 

P4: Consider an arbitrary list of N binary input patterns that is repeatedly presented to ARTI.  Then, 
in list presentations 1 I, where 2 5 x 5 M :  

a) A pattern I of size 1 x cannot be coded by a mixed template V ,  such that [ I n  VI 5 x - 1. 
b) A pattern I of size 5 x - 1 will have direct access to Q stable template that has been created 

in list presentations 5 x - 1. 

P5: Consider an arbitrary list of N binary input patterns that is repeatedly presented to A R T l ,  such 
that IC; ( 1  5 i i. m) of them are of size l; ,  where 1; < l j  f o r i  < j (1  5 i , j  5 m)  and Czl IC; = N .  
Let us denote by Si (1 5 i 5 m)  the set of input patterns of size 1;. Then, in list presentation 
1 2 ,  w h e r e 2 5 x < m + l  
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First List 
Pattern 

I 3 = . . . . 0 0  
14=oo.... 
I<=0000.. 

O O O . O O  . . . . o o  
O O O . O O  O O . . O O  

0 0 0 . 0 0  0 0 . . 0 0  0 0 0 0 . .  

Figure 1: Template formation in ARTl when the five patterns 1 1  = 000111,I2 = 001100,13 = 111100, 
14 = 001111, and 15 = 000011 are presented in the order 1112I31415. The vigilance parameter p was 
chosen in the interval (a, i], and L was chosen according to  Assumption A.2. 

a) 

b) 

Every pattern I of the set S,-l has access to a subset learned template V that can code I ;  
V is created in list presentations 5 x - 1. 
The presentation of a pattern I from the set S,-l can neither create new templates nor 
modify already existing learned templates. 

Properties P1,P2 and P5 are proven in [4]. Property P4 is proven in [3]. Let us now try to 
demonstrate property P3  by presenting two examples. In the example shown in Figure 1, five patterns 
11 = 000111, I 2  = 001100, 13 = 111100, I ,  = 001111, and I5 = 000011 are presented at the F 1  layer 
of ART1. The order of pattern presentation is kept fixed from list presentation to  list presentation. 
In this figure, the templates V(1), V(2), and V(3), emanating from nodes 1, 2, and 3 in the Fz layer 
are also shown. The input patterns and the templates are represented as sequences of open and filled 
circles-where an open circle stands for the value of zero and a filled circle stands for the value of one. 
The first row of Figure 1 shows the first pattern presented (i.e., 11) in the first list presentation and 
the templates formed after its presentation. The second row of Figure 1 shows the second pattern 
presented (i.e., I2) in the first list presentation and the templates formed after its presentation, and so 
on. Prior to  any pattern presentation, the templates V(1), V(2), and V(3) are vectors whose elements 
consist entirely of ones. In Figure 1, the templates V(l)  ,V(2), and V(3) are shown only if they differ 
from the vector containing all ones. The vigilance parameter p is chosen to  be a number in the interval (a, $1, and the parameter L is chosen according t o  Assumption A.2. After the first list presentation, 
the templates V(1) = 000100 = Il n 12, V(2) = 001100 = 13 n I4 and V(3) = 000011 = 1, have 
been created. Note that the initial values of the bottom-up traces of ARTl have to  satisfy certain 
constraints for this template formation to  occur. After the first list presentation learning has stabilized. 
That is, no new templates are created and already existing learned templates are not modified. In list 
presentations 2 2, patterns 11 and 15 are coded by template V(3), patterns I2 and 13, are coded by 
template V(2), and pattern 1 4  is coded by either V(2) or V(3) (depending upon the strength of the 
bottom-up traces converging to  nodes 2 and 3 with templates V(2) and V(3), respectively). 

The next example, shown in Figure 2, is the same as the one shown in Figure 1, except that the 
order of pattern presentation is now 1113121415 .  The order of this pattern presentation is also kept 
fixed from list presentation to  list presentation. The initial values for the bottom-up traces, top-down 
traces, the vigilance parameter p, and the parameter L are chosen exactly the same as in the previous 
example. In Figure 2 we see that after the first list presentation, the templates V(l)  = 000011 = 11n15 
and V(2) = 001100 = 13 n I2 have been created. After the first list presentation, learning has also 
stabilized. That is, no new templates are created and already existing learned templates are not 
modified. In list presentations 2 2, patterns I 1  and I5 are coded by template V(1), patterns I2 and 
I3 are coded by template V(2), and pattern 1 4  is coded by either V(1) or V(2) (depending upon 
the strength of the bottom-up traces converging to  nodes 1 and 2 with templates V(1) and V(2), 
respectively). 

In the previous two examples, ARTl was presented with an identical list of binary input patterns. 
The only difference being the order of pattern presentation within the list. In Figure 1 pattern I2 
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Pattern 
1 1 = 0 0 0 . . .  11 0001.. I 
I.4=....00 II OOO... I .... 0 0  

First List 
V(1’) I V(21 

Figure 2: Template formation in ARTl when the five patterns 11 = 000111,Iz = 001100,13 = 111100, 
1 4  = 001111, and Is = 000011 are presented in the order I113IzI415. The vigilance parameter p was 
chosen in the interval (i, 41, and L was chosen according to Assumption A.2. 

is presented second and pattern 13 is presented third, while in Figure 2 the order of presentation for 
patterns Iz and 13 is reversed; the other input patterns are presented with the same order in the list 
for both examples. We observe from these examples that even a single change in the order of pattern 
presentation within a list can lead t o  the formation of different templates. Carpenter and Grossberg 
have also demonstrated this characteristic of ARTl in the computer simulation results presented in 
[l]. A more interesting observation can be derived by examining the templates formed in the example 
shown in Figure 1. In this example, after learning has stabilized, we observe that  the learned template 
V(1) is not directly accessed by any pattern in the input list. This behavior is not exhibited in the 
example shown in Figure 2. The examples in Figures 1 and 2 verify the validity of property P3. 

It is worth noting that Carpenter and Grossberg have been very careful about the issue of direct 
access. In [l] they prove Theorem 6 which states that  after learning has stabilized in ARTl networks 
satisfying Assumption A.l, each input pattern either has direct access to  a learned template in the 
F2 layer, or the input pattern cannot be coded by any learned template in the Fz layer. They do not 
state that  every learned template in the Fz layer, after learning stabilizes, will be directly accessed by 
at  least one pattern in the input list. Property P3  demonstrates that this is not necessarily true. 

4 Remarks-Conclusions 
In this paper, properties of learning in the ART1 neural network architecture have been presented, 
under Assumptions A.l-A.4. Their proof can be found in [3] and [4]. 

Property P 4  states that if an ARTl network is repeatedly presented with an arbitrary list of binary 
input patterns it self-stabilizes the recognition codes (templates) of size4 (1 5 I 5 M - 1) patterns in 
at  most I list presentations. Property P5 states that  if ARTl is repeatedly presented with an arbitrary 
list of binary input patterns learning stabilizes in a t  most m list presentations, where m is the number 
of distinct size patterns in the input list. Since our modeling assumptions exclude patterns of size 0 
or M ,  m ranges from 1 to M - 1. In most practical applications i t  might be difficult t o  examine the 
patterns in the input list in order to determine the number of distinct size patterns. In most cases 
though, we know the number N of patterns in the input list, as well as the number of nodes M in the 
F1 layer of ART1. In these cases we can say that learning in ARTl stabilizes in at most min(N, M - 1) 
list presentations. Another interesting observation, originating from part b of property P5 is that the 
template formation and learning in ARTl will not be affected if patterns in the set S, (z 2 1) are 
presented only in the first 2 list presentations. 

Properties P1 and P2 are also of particular interest because they show that learning in ARTl does 
not waste network resources by creating identical templates or by creating more templates than the 
number of patterns that we try t o  categorize. Nevertheless, property P 3  indicates that there might 
be a possibility, after learning has stabilized, that some templates are not directly accessed by any 
pattern in the input list. 

It is worth observing that properties Pl,P2,P4,P5 are valid independent of the order in which the 
input patterns are presented within the list. In addition, the ordering of the patterns within the list 
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can change from one list presentation to  the next without affecting the validity of these properties. 
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